

French approach to European Stress Test

International perspective on lessons learnt from Fukushima

Jean-Christophe Niel ASN Director General (EDO)

July 31, 2014

ASN immediate actions

- Campaign of targeted inspections
- "Stress test" analysis of the safety of nuclear facilities
 - Complies with the European Council conclusions (March 2011)
 - Applies to 150 nuclear installations in France (58 NPP, NPP under construction, fuel cycle facilities, research reactors, etc.)
 - Covers:
 - extreme natural events (earthquake, flooding,...)
 - loss of the ultimate heat sink or loss of electrical power
 - severe accident management
 - Is complementary to existing safety improvement processes
 - periodic safety reviews (PSRs)
 - integration of operating experience feedback

Regulatory milestones for the "stress test" process for NPPs

• 5th May 2011: **ASN resolutions** requiring EDF to

perform the "stress tests"

3rd Jan. 2012: ASN position

• 26th Jun. 2012: **ASN resolutions** requiring EDF to

implement measures to strengthen safety

• 21st Jan. 2014: ASN resolutions setting

complementary requirements for the

hardened safety core design

EDF propose and justify technical measures

IRSN and experts standing group provide technical expertise

3rd January 2012: ASN position Main conclusions

- No need for immediate shutdown
- Need to increase robustness of facilities to withstand extreme situations beyond safety margins as soon as possible

Main measures

- Hardened safety core: limited number of material and organisational dispositions to guarantee safety functions in extreme situations
- Nuclear rapid response force (FARN):
 - EDF national intervention team
 - Able to supply local team (trained staff and materials)
 - Fully operationnal on a site in 24 hours

The hardened safety core

Thirty requirements (legally binding) /site

- To reinforce the safety margins beyond design-basis level earthquake and flooding
- To implement new and robust safety measures rather than performing sophisticated analysis
- To implement the safety improvements as soon as possible, not waiting for the next Periodic Safety Reviews (PSRs)

26th June 2012: ASN resolutions (2/4)

the hardened safety core

ASN requirement n° 1: safety goals for the hardened safety core for the situations considered in the stress tests

- To prevent or mitigate the progress of a core melt accident
- To mitigate large-scale radioactive releases
- To enable the licensee to perform its emergency management duties
- System, structure and components (SSCs)
 - designed with significant margins in relation to the requirements currently applicable
 - composed of independent and diversified SSCs. The licensee shall justify the use of undiversified or existing SSCs

NRC Commission meeting on lessons learned from Fukushima - July 31st 2014

26th June 2012: ASN resolutions (3/4) the hardened safety core

Strengthened equipment including

- An additional ultimate electricity generating set/reactor
- A diverse emergency cool-down water supply/reactor
- New crisis management premises with greater resistance to hazards and being accessible and habitable at all times and during long-duration emergencies
- Mobile devices and means of communication essential to emergency management
- Technical and environmental instrumentation

26th June 2012: ASN resolutions (4/4)

the nuclear rapid response force

- ASN requirements 36-37: the nuclear rapid response force (FARN) specialized teams able in less than 24 hours to
 - take over from the personnel of a site affected by an accident
 - deploy additional emergency response resources
 - with simultaneous intervention on all reactors of a 4 reactors site by the end of 2014 and 6 reactors site by the end of 2016

21st January 2014: ASN resolutions

The resolution sets more detailed safety goals for the hardened safety core

- Prevent core melting when reactor coolant system is pressurisable by giving priority to cooling by the secondary system
- Guarantee the performance of the containment
- Allow residual heat removal from the containment without opening the venting system

The resolution requests EDF to:

- Define the list of SSCs composing the hardened safety core and their qualification requirements
 - New SSCs designed according to industrial standards
 - Existing SSCs verified according to industrial standards, or verified according to methods allowed during PSRs

21st January 2014: ASN resolutions (2/2)

- Define seismic hazard for hardened safety core design (return period - 20 000 years)
- Set requirements regarding external hazards (other than earthquakes and flooding)
- Verify pools structural resistance behavior under hardened safety core situations
- Prevent dewatering of the fuel assemblies in spent fuel pools
- Ensure dropping of control rods under hardened safety core situations
- Provide independance of hardened safety core I&C and electrical systems from existing ones
- Define hardened safety core instrumentation

Time schedule

Synthesis (1/2):Situation today

1 : Reactor cooling system

2: Fuel pool cooling system

Synthesis (2/2): Final situation

1 : Reactor cooling system

2: Fuel pool cooling system

3 : Reactor containment cooling system

Stress tests at the European Level

- Stress tests performed by ASN in the framework of "European stress tests"
- European benchmark and peer reviews performed
- Conclusions at the national level & European level
- Main conclusions at the European level:
 - Develop European guidance on assessment of natural hazards and margins
 - Periodic Safety Reviews (PSRs) are essential for continuous improvement of safety
 - Necessity to re-evaluate natural hazards at least every 10 years
 - PSR of the existing reactors should be guided by the objective of avoiding off-site contamination
 - Need to maintain containment integrity
 - Urgent implementation of recognized measures (H2 explosion prevention...) for NPPs not yet implemented
 - Need to implement measure to prevent accidents in case of extreme natural hazards and limit their consequences

asn

Conclusions

- Complete experience feedback from Fukushima accident will take at least 10 years
- Stress tests performed in European framework.
 European Benchmark to be continued
- Stress tests lead to strengthen the robustness of NPPs to beyond design situations to prevent accidents resulting from unforeseen/extreme natural hazards and to limit their consequences
- Two main set of measures are defined: hardened safety core and nuclear rapid action force
- Before full implementation, transitory measures are requested

Acronyms

- ASN French nuclear regulatory body
- DUS Ultimate diesel generator
- ECC Emergency Control Centre
- EDF Électricité de France
- FARN Nuclear Rapid Response Force
- HSC Hardened Safety Core
- IRSN French Institute for Radiation
 - **Protection and Nuclear Safety**
- PSR Periodic Safety Review